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ABSTRACT
Mass spectrometry and single molecule force microscopy are two experimental approaches able to provide structural information of intrinsically disordered proteins (IDPs). These techniques allow the dissection of conformational ensembles in their main components, although at a low-resolution level. 
In this work, we interpret the results emerging from these experimental approaches on human alpha synuclein (AS) through a molecular perspective, analyzing a 73 microsecond-long simulation of the protein in explicit solvent. 
The combined theoretical and experimental data provide a description of AS main conformers, shedding light into intramolecular interactions and overall structural compactness. This approach can be easily transferred to other IDPs.
 
INTRODUCTION 
Intrinsically disordered proteins (IDPs) lack a defined and ordered three-dimensional structure 1,2. They can exhibit rather diverse conformational ensembles in solution, retaining a high degree of structural disorder. The experimental technique most suited to determine IDP structural ensembles at atomic resolution is NMR 3,4, at times aided by computational methods including molecular dynamics simulations 5. In addition, several other techniques can provide complementary, low-resolution information. These include native mass spectrometry (MS) and single-molecule force spectroscopy (SMFS). The first technique provides information related to protein structural compactness: its charge-state distribution (CSD) analysis allows the estimation of the solvent-accessible surface area (SASA) in solution 6–9, while ion mobility (IM) yields values for the rotationally-averaged collisional cross-section of the ions in the gas phase 10–12. The second technique gives information on the strength of the intramolecular interactions, which aids in the characterization of the distinct conformers in solution.  
In this paper we explore the use of molecular dynamics (MD) simulations to provide insight on the structural determinants of IDP conformers as emerging from MS and SMFS. In this work, we focus on human alpha-synuclein (AS). This IDP plays a key role for the progression of Parkinson’s disease 13–15. The protein consists of 140 amino acids and is highly disordered, both in solution and in cell cultures 16. Nonetheless, it can adopt well-defined structures when interacting with membrane or cellular partners 17. Our work is motivated by a recently published (73 microsecond-long[footnoteRef:1]) MD simulation of AS in explicit solvent 18. This provides an unprecedented molecular view on the AS conformational ensemble and a rather insightful interpretation of the experimental data.  This information is used to provide insight on the major conformational components (CCs)  emerging from MS and SMFS experiments performed by some of us 19,20. In the first case, the deconvolution of MS spectra yields CCs that range from compact to expanded. In the second, the CCs identified describe strong-interacting, weak-interacting and random coil conformations, according to the pulling force required to achieve mechanical unfolding 19,20. [1:  The original 60 microsecond-long trajectory reported in this paper had issues with periodic image interactions, thus, a second, 73 microsecond-long simulation produced by the same group was used here. ] 


METHODS
An structural ensemble of alpha synuclein (residues 1-140), simulated for roughly 73 microseconds was retrieved from D. E. Shaw research 18, and used with structures sampled evenly every 10 ns, accumulating a total of 7320 conformations. This ensemble has been validated experimentally against SAXS measurements 18. 

Several structural descriptors were computed. Hydrogen-bonds and charge contacts were computed with the hydrogen bond and Salt Bridges modules of VMD 21, respectively. Solvent-accessible surface area was computed with the FreeSASA module 22. The Accessible Solvent Area was computed from the mean values of each residue over the Maximum Accessible Solvent Area values obtained in ref. 23. Radius of gyration was computed with the gmx gyrate module 24. Hydrophobic contacts were computed as the distance between the centers of mass of the side chains of hydrophobic residues. A contact was considered when the distance was lower than a certain cutoff. This was computed with MDAnalysis 25. 

Feature clustering was performed using the AgglomerativeClustering module of scikit-learn 26. A cluster cut-off of 3 was used for M0-M3, while a cluster cut-off of 4 was used for C0-C2. The quality of the clustering parameters was established by the elbow method 27. The Silhouette and Calinski-Harabasz scores were employed 28,29. 

The population standard deviation from the MD simulation was obtained through a jackknife approach, based on 50 samples covering 90% of the original trajectory. To quantify the overlap between the two sets of CCs, a dimensionality reduction was performed using the implementation of t-Stocastic Neighbor Embedding in Python (t-SNE) 30. It was observed that multiple runs of t-SNE converged into the same representation at a value of perplexity of 40. 

Two distinct estimations of SASA from the average charge state of conformers in Native-MS data (Zav) were employed. Model a was obtained by the empirical relationship of Zav with the SASA of globular proteins, obtained from folded PDB structure 7. Analogously, model b exploits SASA values deriving from Monte Carlo simulations of the unfolded ensemble generated by ProtSA 31. These two models provide similar results for small proteins, while this is not the case for large proteins 32. 

RESULTS AND DISCUSSION
In a first approach, we attempt to identify as many CCs from the MD trajectory as many from MS and SMFS experiments 19,20 (4 and 3, respectively). To this aim, we perform a clustering procedure using different descriptors, including solvent-accessible surface area (SASA), radius of gyration (RG), end-to-end distance (EE), number of intramolecular hydrogen bonds (HB), intramolecular hydrophobic contacts (HC), and salt-bridges (SB, see Methods section for details). Of course, the analysis provides different CCs depending on the numbers and type of descriptor. It turns out that the clustering provides 4 CCs if one uses SASA, RG and EE as descriptors and 3 CCs using HB and HC. The CCs obtained are thus compared with those by MS and SMFS, respectively. The comparison allows us to uncover some of the salient structural determinants of the CCs based on the simulation data.

1.  Comparison with MS 
1.1. General features
The CCs obtained for the comparison between the MS and MD are listed in order of decreasing compactness (C0-C3), in Table 1. 

The populations of the CCs obtained by MD and MS are qualitatively similar. However, they show some difference in relative amounts: the compact species are more represented and the extended species are less represented in MD than in MS. Similarly, the collisional cross-section mean values display a good general agreement between simulations and experiments. They increase on passing from C0 to C3, with MS values being smaller for compact species and larger for extended states compared to MD. We notice that the calculated CCS are in the same range as the experimental ones and not statistically different from each other.

For the SASA values, two slightly different linear regressions models for calculating it from MS data have been generated, for either folded or unfolded proteins (Table X, see Methods section for details). The calculated SASA values agree fairly with both the experimentally-derived ones. 

This discrepancies in the measurements above may be caused by several reasons, including: (i) the AS ensemble was simulated in solution by MD while it is studied in vanishing solvent, under electrospray conditions, by MS; (ii) limitations of the time-scale and/or the force fields for the MD 33; (iii) uncertainties as regarding the clustering in the MD. Moreover, comparisons between CCS of proteins simulated in water solution and those investigated in the gas phase by MS experiments should obviously be made with great caution. 

1.2. Structural features
Structural features were analyzed in terms of the four CCs. The calculated radius of gyration (RG) increases on passing from C0 to C3 (Fig. 1, A). Instead, the intramolecular hydrophobic contacts (HC), intramolecular hydrogen bonds (HB) and salt bridges (SB) decrease (Fig 1, A). The helical content is similar across all the conformations. The beta-strand content and the end-to-end distance (EE) increase from C0 to C1, and from C1 to C2/C3. The latter two CCs are not statistically different in this regard. 

	
	
	C0
	C1
	C2
	C3



	Population (%)
	MS
	5-10
	20-30
	40-50
	20-30

	
	MD
	16.37 ± 6.94 
	31.94 ± 7.19
	32.94 ± 8.18
	18.74 ± 5.51



	Collisional cross-section     (nm2)
	IM-MS
	21.88
	23.88
	27.22
	29.44

	
	MD
	23± 2.84
	25± 2.24
	27± 2.54
	28± 2.25



	SASA 
  (nm2)
	MSa
	70-75
	90-120
	125-160
	165-195

	
	MSb
	72-80
	105-150
	175-235
	265-310

	
	MD
	124.29 ± 2.54
	135.91 ± 2.48
	146.09 ± 2.46
	158.17 ± 2.3



Table 1. CCs emerging from MS. Experimental and calculated values of populations, SASA and collisional cross-section of the four CCs. The MS-derived SASA values were derived using models  for (a) folded structures and  (b) unfolded structures (see Methods).

Delving further, the features were analyzed in terms of residues and regions in AS primary structure. C0 is stabilized through intra-region HB in each of the three regions, particularly in the C-terminal one. In C1, the number of HB content decreases, notably more in the C-terminal one. For C2 and C3, the HB content reduction is more noticeable in the NAC region. Some relevant interactions conserved across all four clusters include residues located mainly within the N-terminal and C-terminal regions. 

The hydrophobic contact content (HC, defined in Methods) decreases on passing from C0 to C1-C3, especially because of the loss of hydrophobic contacts inside the NAC and C-terminal region. Remarkably, clusters C1-C3 share the same amount of HC. 

At the single-residue level, the change in SASA was registered as the percentage of maximal accessible surface area (‘MaxASA’, see Methods). The largest increase across C0-C3 is found in residues V52, T54, V70, V71, V74, V82, F94, L100, V118, Y125. Overall, this indicates that, going from C0-C3, the residues in the N-terminal and C-terminal regions seem to have similar SASA, while the residues in the NAC region significantly increase their contact with the solvent (Fig. 1, C).
  
On the whole, it can be seen that the four clusters conserve HB interactions within the N-terminal and C-terminal regions (E13, V15, E35, V37, D98, E110, I112, E114, M116, D134, Y136), and HC interactions within the N-terminal and NAC regions (F4, V16, A17, A18, L38, Y39, V70, V77, A89, A90, P117). 

[image: ]
Figure 1.  Selected results from the molecular dynamics simulation. (A) Selected properties of C0-C3; (B) Top representative structures of the CCs from a structure-based clustering. (C) Number of hydrogen bonds, number of hydrophobic contacts across C0-C3. Maximal accessible solvent area (MaxASA) for all residues of C0-C3.  




2. Comparison with SMFS data
2.1. General features
 
The CCs obtained by SMFS are listed in Table 2, in order of decreasing intramolecular strength (from strong-interacting (M0), to weak-interacting (M1) and random coil (M2)  19,20). At the very qualitative level, we associate here the number of intramolecular interactions (HB, HC) to these classes. In other words, we make the plausible assumption that the content of intramolecular interactions distinguishes among the strong-interacting, weak-interacting and random coil conformations.

	
	
	M0
	M1
	M2

	Population (%)
	SMFS
	~10
	~30
	~60

	
	MD
	15.86 ± 2.25 
	 29.06 ± 2.03
	55.09 ± 2.96

	Intermolecular strength
	SMFS
	 Strong interacting
	Weak interacting 
	Random coil

	
	MD
	Multiple HB and HC contacts
	 Reduced HB and HC contacts
	Mostly HC contacts 



Table 2. CCs emerging from SMFS experiments. Experimental and calculated values of the populations of the three CCs.

The populations of the CCs obtained by MD and SMFS are also qualitatively similar. When discussing intramolecular interactions it is observed that, on passing from M0 to M2, the amounts of HB and HC get strongly reduced (vide infra), in line with the experimental observations. 

2.2. Structural features
With respect to global structural features, RG and the EE are very similar in M0 and M1, and increase, instead, for M2. The coil content increases, while the beta strand content decreases on passing from M0 to M2. (Figure 2, A). The helical content does not change significantly across the conformers.  

The SASA increases on passing from M0 to M2 (126.4 ± 1.33, 136.13 ± 1.89,147.38 ± 2.24 nm2, respectively). It is also shown that the residues in the N-terminal and C-terminal regions do not modify significantly their SASA, as the NAC region does. The largest increase is found for residues V52, T54, V55, A69, V70, V71, V74, V78, V82, I88, A89, A91, F94, L100. 

The largest contributions of HB and HC come from the NAC and the C-terminal regions. The latter contributions decrease progressively in M1, and further, in M2. Interestingly, the HB formed by residues E13, V15, D98, E110, I112, E114, M116, Q134, Y136, along with HC interactions formed by F4, V16, A17, A18, L38, Y39, V70, V77, A89, A90, P117, are conserved across all the conformers.
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Figure 2.  Selected results from the molecular dynamics simulations. (A)  Properties of M0-M2, emerging from the MD simulations; (B) Top representative structures of the CCs from a structure-based clustering. (C) Number of hydrogen bonds, number of hydrophobic contacts across M0-M2.  Maximal accessible solvent area (MaxASA) for all residues of C0-C3.  

3. Overlap between M0-M2 and C0-C3
The overlap between the two sets of CCs was calculated by using a dimensionality reduction projection by t-SNE, and the cluster members were projected on it. Fig. 3 shows that M2 has a large overlap with C2+C3, sharing ca. 80% of the conformations, and covering ca. 50% of the total conformational space. The comparison between M1 vs. C1 and M0 vs. C0 shows a significantly reduced overlap, sharing ca. 50% of the conformations for both comparisons. Both clustering schemes define in similar ways the expanded/random coil structures, but the compact clusters appear to be defined in different ways. This finding is in line with the fact that MS and SMFS agree at best in assessing changes in the random coil CC while capturing different aspects of the compact or partially collapsed CCs.

[image: ]
Figure 3. Clusters C and M in the common reduced feature space of tSNE.

Conclusions
This work has provided details on the structural determinants of CCs observed experimentally by MS and SMFS for free AS in solution. Remarkably, computational simulations were able to merge the partially contrasting results from the experiments. By associating the latter with CCs obtained from a very long simulation of the protein, we were able to describe the intermolecular interactions and the SASA in the different regions of the protein. 

The C0-C3 CCs show structures with compact cores, which involve intra N-terminal and intra NAC interactions. On the other hand, the M0-M2 CCs highlights the role of the NAC region, and its ability to form HB and HC when found in compacted states. 

This study points out that different features for clustering focus on specific traits of the CCs. Although this is not an issue when trying to describe the unfolded states, it leads to partially different results when describing compact states, covering somewhat different populations. 

The methodology could be used for other IDPs in a rather straightforward way. Thus, the combined use of extensive MD with MS and/or SMFS may be an additional, useful tool for the investigations of this fascinating class of proteins. 
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Supplementary information:
Clustering metrics for the compactness features (Clusters C0-C3).
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Clustering metrics for the mechanostability features (Clusters M0-M2).
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The elbow method [1] at the total within-cluster sum of square (WSS) as a function of the number of clusters. The location of a knee in the plot is usually considered as an indicator of the appropriate number of clusters because it means that adding another cluster does not improve the partition. This method seems to suggest 4 clusters for the compactness space, and 3 clusters for the mechanostable space. 

The Silhouette score [2] is calculated using the mean intra-cluster distance, as well as the mean distance to the nearest cluster for each sample in the dataset, while the Calinski-Harabasz score [3] is a variance ratio measurement which measures the ratio between within-cluster dispersion and between-cluster dispersion. For both scores, the higher the value, the better the clustering. 





Most frequent residues involving hydrophobic contacts through the compactness descriptors

	Region
	C0
	C1
	C2
	C3

	N-terminal
	F4
	F4
	F4
	F4

	N-terminal
	V16
	V16
	V16
	V16

	N-terminal
	A17
	A17
	A17
	A17

	N-terminal
	A18
	A18
	A18
	A18

	N-terminal
	L38
	L38
	L38
	L38

	N-terminal
	Y39
	Y39
	Y39
	Y39

	NAC
	V70
	V70
	V70
	V70

	NAC
	V71
	
	
	

	NAC
	V74
	
	
	

	NAC
	A76
	
	
	

	NAC
	V77
	V77
	V77
	V77

	NAC
	A89
	A89
	A89
	A89

	NAC
	A90
	A90
	A90
	A90

	C-terminal
	A91
	
	
	

	C-terminal
	F94
	
	
	

	C-terminal
	P117
	P117
	P117
	P117

	C-terminal
	Y125
	
	
	

	C-terminal
	M127
	
	
	







Most frequent residues involving hydrophobic contacts through the mechanical stability descriptors

	Region
	M0
	M1
	M2

	N-terminal
	F4
	F4
	F4

	N-terminal
	V16
	V16
	V16

	N-terminal
	A17
	A17
	A17

	N-terminal
	A18
	A18
	A18

	N-terminal
	L38
	L38
	L38

	N-terminal
	Y39
	Y39
	Y39

	N-terminal
	V52
	
	

	NAC
	A69
	
	

	NAC
	V70
	V70
	V70

	NAC
	V71
	
	

	NAC
	V74
	
	

	NAC
	A76
	A76
	

	NAC
	V77
	V77
	V77

	NAC
	A78
	
	

	NAC
	V82
	
	

	NAC
	A89
	A89
	A89

	NAC
	A90
	A90
	A90

	C-terminal
	A91
	
	

	C-terminal
	F94
	
	

	C-terminal
	P117
	P117
	P117

	C-terminal
	Y125
	
	

	C-terminal
	M127
	
	




[1] Robert L. Thorndike (December 1953). "Who Belongs in the Family?". Psychometrika. 18 (4): 267–276. doi:10.1007/BF02289263.
[2] Peter J. Rousseeuw (1987). “Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis”. Computational and Applied Mathematics 20: 53-65.
[3] T. Calinski and J. Harabasz, 1974. “A dendrite method for cluster analysis”. Communications in Statistics
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